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This paper examines the nature of the development of two-dimensional laminar 
flow of an incompressible fluid at  the rear stagnation point on a cylinder which is 
started impulsively from rest. Proudman & Johnson (1962) first examined this 
type of flow, andobtainedasimilarity solution ofthe inviscid form ofthe equations 
of motion. This solution describes the nature of the flow at large distances from 
the surface, for large times after the start of the motion. Here, the flow at the 
rear stagnation point is examined in greater detail. The solution found by 
Proudman & Johnson constitutes the leading term in an asymptotic expansion, 
valid for large times. Further terms in this expansion are now calculated, and the 
method of matched asymptotic expansions is used to obtain an inner solution 
describing the flow near the surface. A numerical integration of the full initial- 
value problem gives good agreement with the analytical solution. 

1. Introduction 
Consider the development of the two-dimensional laminar flow of an in- 

compressible fluid of small viscosity past a cylinder which is started impulsively 
from rest and then maintained a t  a constant speed. At the initial instant of 
starting, the classical potential flow prevails throughout the entire flow field, 
save for a layer of intense vorticity concentrated on the surface of the cylinder. 
For small times after the start of the motion the development of the boundary 
layer on the surface is described by the series solution of Blasius (1908) and 
Goldstein & Rosenhead (1936). (Wundt (1955) corrected errors in Goldstein & 
Rosenhead.) 

The existence of an adverse pressure gradient over the rear of the cylinder 
leads to a thickening of the boundary layer, accompanied by a decrease in the 
skin friction, until eventually a time is reached when the skin friction vanishes 
at  some point on the surface, and flow reversal begins. The precise location of 
this point depends on the shape of the sur€ace, but for a circular cylinder the flow 
reversal begins at the rear stagnation point. The onset of flow reversal leads to  the 
establishment of regions of closed streamlines at the rear of the cylinder, the size 
of which increases rapidly with time. The flow at the front of the cylinder rapidly 
approaches a steady state, but it is well known that no solutions of the boundary- 
layer equations representing steady flow near the rear stagnation point can be 
found. 
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An important contribution to the understanding of the flow development a t  
the rear stagnation point has been made by Proudman & Johnson (1962). They 
argued that, since the boundary-layer thickness grows very rapidly under the 
action of the convection field once flow reversal has occurred, the length scale 
normal to t,he boundary becomes much larger than the distance over which 
viscous forces are important. They therefore conjectured that the viscous term 
in the governing equation is important only near the boundary and that most of 
the asymptotic flow for large times is governed by the inviscid equation. A simi- 
larity solution of the inviscid equation was found, and showed that the boundary- 
layer thickness increases exponentially with time. This solution also showed that 
the flow near the boundary ultimately becomes steady flow towards a stagnation 
point. The skin friction a t  the rear stagnation point therefore tends to a finite 
negative value, equal in magnitude to that a t  the front stagnation point. 

We now examine the rear stagnation point in greater detail. The similarity 
solution found by Proudman & Johnson constitutes the leading term in an 
asymptotic expansion describing the flow a t  large distances from the boundary. 
Further terms in this expansion are now determined. I n  conjunction with this, 
an inner expansion which describes the flow near the boundary for large times 
after the start of the motion is developed. The two expansions are matched in the 
usual manner. It will be seen that a number of arbitrary constants arise in the 
solution, not all of which can be determined by matching the two expansions. 
It is not surprising that a certain amount of indeterminacy appears in the solution, 
since the expansions proceed 'backwards' in time, whereas the flow pattern at  
any instant is of course determined by details of the flow a t  earlier times. 

In  order to determine the approximate value of these constants, a numerical 
solution of the full initial-value problem is undertaken. Suitable choice of the 
constants enables a fairly close match to be made between the numerical and 
analytical solutions. 

2. Equations of motion and boundary conditions 
Let x' and y f  be co-ordinates measured, respectively, along and normal to the 

surface of the cylinder, where x f  is measured away from the rear stagnation point. 
We define non-dimensional co-ordinates x, y and t by 

x = x'la, y = yf(2U,/va)+, t = 2U,tf/a, (2.1) 

where U, is the speed of the stream a t  infinity, a is the radius of the cylinder, v is 
the kinematic viscosity of the fluid and t' the time. The flow in the neighbourhood 
of the rear stagnation point is idealized by considering the surface to be an infinite 
plane wall. The potential flow corresponding to an impulsive start is then de- 
scribed by the stream function 

$ = - (2vaU,)txy, (2.2) 

giving u = a ~ / a y f  = -2U,x, v = -a$/axf = (2vUo/a)4y, (2.3) 

where u and v are the velocity components along and normal to the surface. Since 
the flow field is assumed to remain unchanged a t  sufficiently large distances from 
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the boundary at any finite time, the above potential flow will be maintained as 
an outer boundary condition for all values oft. 

Provided that the surface is an infinite plane wall, we can obtain an exact 
solution of the Navier-Stokes equations by writing the stream function in the 
form 

where the function F ( y ,  t )  must satisfy the boundary and initial conditions 

(2.4) $!? = - (2vaU0)4xP(y, t ) ,  

F =  F, on y =  0 for t =# O , ]  

F,+l as y - f o o ,  

Fv = 1 at t = 0 for y $: 0. 

The equations of motion then yield the following equation for F :  

(2 .5 )  

Our objective is to obtain an asymptotic solution describing the flow at large 
times after the start, so the details of the initial flow need not be considered here. 
Proudman & Johnson found a similarity solution of the inviscid form of (2.6), 
in the form 

F ( y ,  t )  = etf(yeWt). 

This solution describes the exponential growth of the boundary-layer thickness 
for large values oft. Hence the relevant outer variable is given by y = ye-t, and 
we write the stream function describing the flow in the outer region as 

(2.7) 

$!?o = - (2vaUo)SxG(y, t )  (y = ye-t). (2.8) 

(2.9) 

G,(y,t)-+et as y-foo, i.e. as y-fm forfixedt. (2.10) 

Substitution into the Navier-Stokes equations gives the following equation for G: 

~K~~G, , , ,  - e-2tGG,,,, - 1 + e-2tGi = ect(G,,, - G, - yG,,), 

where G(y, t )  is required to satisfy the outer boundary condition 

Near the boundary, where the viscous forces are important, we seek a solution 
satisfying the inner boundary conditions of zero normal and tangential velocity, 
so we write the stream function in the form 

Il.i = - (2vauo)+xg(y, t ) ,  
where g(y, t )  satisfies the inner boundary conditions 

(2.11) 

g = g , = O  on y = O .  (2.12) 

The inner equation is then given by 

g,,, - gg,, - 1 + st - g,t = 0. (2.13) 

3. The analytical solution 
As was previously indicated, we expect the Proudman 65 Johnson solution 

to form the leading term of our outer expansion. Hence, for our first outer solution, 
we write G(y, t )  = etFo(r). 

11-2 
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Substitution in (2.9) yields the equat,ion obtained by Proudman & Johnson: 

A. J .  Robins and J .  A .  Howarth 

(Po - r)P[ + 1 - F;z = 0, 

with solution Po = 7 - (2/c) (1  - e+?), 

where c is a constant of integration whose value will be determined in the next 
section. We expand this outer solution and rewrite it in inner variables to obtain 

G(7, t )  - - y + cy2e-t - &c2y3 e-2t + O( e-3t). 

g(9, t )  = fo (Y) .  

(3.3) 

(3.4) 

The leading term of this expansion is independent of t ,  indicating that our first 
inner solution is 

Substitution in (2.13) then yields 

(3.5) I f(y -fof[ - 1 + j ; z  = 0, 

f 0 P )  = fA(0) = 0, fo(Y)  -+ - 9 as Y -+a. 
This is effectively the forward-stagnation-point boundary-layer problem 
(Hiemenz 1911) with a change in sign info. It is a numerical problem, and, as is 
well known, the correct behaviour as y-too is ensured by choosing fl(0) suitably. 
Withf:(O) = - 1-2326.. . , the asymptotic form of f o  is 

fo  N -y+6+exp, (3.6) 

where 6 = 0-6479.. . , and 'exp' denotes a term exponentially small as y -t 00. 

constant S indicates that the outer expansion should proceed as 
Thus the leading term matches with the outer expansion, and the displacement 

G(r ,  t )  = etP0(r) + q ( r ) .  (3.7) 

Substitution in (2.9) then gives 

The solution is 

F, = A,(& - ecc?) + A;(e -h(  1 - e-")3 - ( I  - 2 e - c 7 )  sin-l(e-h)}. (3.9) 

We expand for small 31 and rewrite in inner variables to obtain 

G(7, t )  = etFo + El - - y + (+7i-A; - +A,) + {y2+ (A, - A;n)y} ce-t 

+ $A;yh3e-jt + { - +y3 + i(7i-A; - A,) y2} c2e-Zt + O( e-%t). (3.10) 

To match with our inner solution we must take 

&nA; - $Al = S. (3.11) 

Note that A, and A; are not completely determined. It is convenient to  regard A; 
as being unknown a t  this stage, and regard A, as being known in terms of A;. 
Thus we write A, = - 26 + 7i-A;. 

It is relevant a t  this stage to comment on a remark in the original Proudman & 
Johnson paper. They refer (in an immediate context which need not directly 
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concern us here) to the “second term of the asymptotic expansion for large t ”, 
and say that “ one solution involves fractional powersof y e-t near y = 0 and seems 
unlikely to be relevant ”. This is equivalent to the assertion that A; = 0. We shall 
show that this is not the case (although this does not affect the validity of the 
qualitative argument with which they are directly concerned). Certainly one 
cannot rule out that A; terms on the grounds of singular derivatives at y = 0, 
because the terms in question are part of an outer solution, not an inner one. In  
fact we shall see that the A; term gives rise to a homogeneous inner equation, 
whose solution is determined in terms of A;. 

It is clear that our inner solution must proceed as 

(3.12) 

(3.13) 

The asymptotic form of this equation is given by 

f, N a1(y2 - 26y) +a; + exp, (3.14) 

for some constants a, and a;. Since we have already chosen A, - nA; = - 26, we 
can match this solution with the outer one by taking a1 = 1. This is achieved by 
choosing f ’ ; (O)  suitably in the numerical integration of the inner problem. We 
find that f’i(0) = 1.6337.. . ; a; is then determined, and is equal to 1.7060.. . . 

It is convenient at  this stage to match the e-Qt term in the outer solution, so that 
our complete second inner solution is of the form 

d Y ,  t )  = fo(Y) + ce-Y1(y) + cze S t  f # ( Y ) ,  

f; +of; + (2fA + Bfi -fa# = 0, 

(3.15) 

(3.16) 

f j (0)  =f@) = 0. (3.17) 

where, from (2.13), 

The asymptotic form is 

(3.18) 

and to match with the outer solution we must take 

= $A;. (3.19) 

Hence a+ is known only in terms A;, which itself is not known. Such indeter- 
minacy is not uncommon in problems of matched asymptotic expansions. The 
value of the constant depends on the precise nature of the earlier time develop- 
ment, which is known only from a full study of the viscous initial-value problem. 
Strictly speaking, this is the second undetermined constant to arise, the first 
being the constant c of the original Proudman & Johnson analysis. In  fact the 
constant c represents an uncertainty in the precise location of the time origin. 
This can readily be seen by noting that, in t,he outer problem, c always occurs 
multiplying the variable 7; thus c~ = cye-t. Clearly a change from t to t + t* can 
be incorporated in c. Later, an attempt is made to determine A; from the numeri- 
cal solution of the full viscous problem. 
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It is clear that the term a; in fi will generate the third outer solution, which 
must proceed as 

where, from (2.9)) 
G(7, t )  = etFo(7) + Fl(7) + e-tF,(7), 

(7 - F,,) PL -+ 2(FA + 1) J'; - FL F z  = - pl+ 
(3.20) 

&(a) = 0. 
The solution, after some algebra, is 

1p2 = c($A: - I )  - cA4,A;e-"/ sin-l(e-h) + cA;2e-cv [sin-l(e-h)]2 

+ cA,( 1 - e-cv) + cAi {( 1 - e-cv) log (1 - ec?I) + 1}) (3.21) 

If we expand for small 7, rewrite in inner variables and replace A, by 7rA; - 28, 
for some constants A, and A;. 

as previously determined, we obtain 

G(7, t )  - etPo(r> +Ti(?) + e-tF2(7) 
N - y + 8+ {y2 - 28y + (Ah + 8, - l))ce& 

+ A;(@ - 282)) c%eft - A ;  yc2t e-zt 

+ { - $y3 + 8y2 + A; y logy + [A;,( I + inz) - 7~8A; + A ,  + A ;  log c]y}c2e--2t 

+ O(e-Qt). (3.22) 

Note first that the extra term - 28y4A; in the c8e-%t bracket aIready matches with 
a corresponding inner term, by the choice of a# made already. 

TO match the term in the inner expansion, we must now take 

that is, 

a; = A ; + P -  1;  

A; = a;+ 1 - 8 2  = 2-2862 ... . (3.23) 

Clearly our third inner solution must be of the form 

g(Y, t )  = fo(y) +ce-"fi(y) +c%e-$y&y) + ~ ~ t e - ~ t f , , ( y )  -t cze-2yzo(y). (3.24) 

Note that, if 8 = ect, then t eczt = - 19 log E, and so this is the first stage at  which 
logarithmic terms enter the expansion. We find that 

fli -fof& + 2(fi  + 1)fL -f& = 0) 

f&fof;O+2(f;+ ~)f;;o-f:fzo =fhl+flY;-f;z) 

fil(0) =f;l(o) = 0 (3.25) 
and 

fiO(0) =f;O(o) = 0. (3.26) 

fil a 2 1  Y + 4 1  + exp, (3.27) 

f 2 0  -~Y3f8Y2+"~0Y+[a21+2(1 +a;-82)]ylogy+a~o+O(y-1)+exp, (3.28) 

We now do the matching. For the t e-2t term we need 

Asymptotic analysis gives 

for some constants azl, ahl, az0 and aio. 

~ 2 1  = - A ;  = - 2.2862., , ; (3.29) 
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this is done by choosingf;,(O) = - 2.4954. .. in the numerical integration. This in 
turn determines a;, as 1.1853 ... . 

Now consider the term of order e--2t. We match the term y log y by taking 

a,, + 2( I + - 6,) = A;. 

This condition is already satisfied since we have chosen 

a21 = -A;  = -(I+a;-a2). 

Finally the term of order ye-zt is matched by taking 

~1.20 = A;,( I + an2) - nSA; + A ;  log c + A,. (3.30) 

We see that azo is known only in terms of A; and A,. Thus A, is the next undeter- 
mined constant to arise. The outer expansion will proceed further, with terms of 
order e-gt, t e-2t, e-2t, etc. However, there seems little point in continuing the 
analysis further, partly because of the algebraic complexity and partly because 
the solutions would be of doubtful use because of many further undetermined 
constants which will arise, and be extremely difficult to evaluate. 

Finally, we ought to consider the effect of adding linearized eigensolutions of 
the inner problem to our solution. Thus, if we consider 

9(Y, t )  = fo(Y) fCf"(Y7 t ) ,  

where f * ( O , t )  =f:(O,t) = 0 and fz(y,t)+O 

exponentially as y + 00, we obtain, on linearization, 

f ""  - f o f " "  + 2fAf*' -!if* = f?'. 

This is the problem considered by Kelly (1962) (with -fo forfa). The first linear- 
ized eigenfunction is of the form H ( y )  e--ht, where h > 0 is an eigenvalue, whose 
lowest possible value is 3-063.. . . This term is thus of higher order than those we 
have considered, and may be legitimately ignored at this stage. Mote that, since 
these eigenfunctions are exponentially small as y-foo, they do not affect the 
outer solution, nor are they affected by it. 

4. Numerical solution 
A numerical solution of (2.6) subject to the boundary conditions (2.5) was 

undertaken in order to estimate the values of the constants c, A; and A,. A Crank- 
Nicolson fully implicit finite-difference technique was used. This method has 
the advantage of being unconditionally stable, imposing no restrictions on the 
mesh intervals used. Since the equation is nonlinear, we must use an iterative 
technique. The solution a t  any time step was deemed to have converged when two 
successive evaluations of the skin friction differed by less than a small tolerance c,  
which was taken to be Each iteration involves the inversion of a tri-diagonal 
matrix. A velocity profile must be assumed at  the beginning of each time step, to 
start off the iteration. This is usuaIIy taken as the profile a t  the previous time 
step, except at  the start of the integration, when a straight-line velocity profile is 
assumed. 
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The mesh intervals used were At = Ay = 0.05, so that 110 time steps were taken 
in integrating the equations from t = 0 to t = 5.5. To allow for the rapid growt,h 
of the boundary-layer thickness at  large times, the number of mesh points across 
the layer was increased at  certain preassigned values oft .  The value of ym, at  
which the outer boundary condition is enforced, was eventually increased to 500, 
that is, 10 000 steps. 

As was noted by Proudman & Johnson, it seems likely that the value of the 
constant c is determined by the early development of the flow. It was therefore 
thought important to obtain a fairly accurate solution at the start of the motion. 
The relevant boundary-layer co-ordinate for small times is 

and the initial profile is given (with non-dimensional velocity u) by 

u = erf y1 (4.2) 

(Blasius 1908). The boundary-layer finite-difference equations were therefore 
initially formulated using y1 as the co-ordinate normal to the surface; the 
integration was performed up to t = 0.25, and after this point the co-ordinate 
yz = y'(2Uo/va)Q was introduced. The integration was then continued up to 
t = 5.5 without any further change of variable. The value oft = 0-25 was chosen 
since y1 = yz at t = 0.25 for all values of y'; that is, the two finite-difference grids 
coincide at this value of t, so that the velocity profile a t  t = 0-25 may be used 
directly to calculate the profile at the next time step, without the use of any 
interpolation procedure. 

The value of the constant c was estimated using the method adopted by Proud- 
man & Johnson. The leading term of the outer expansion gives 

log(1-u) = -cy+log2, (4.3) 

so that, for any fixed large value oft, a graph of log (1 - zc) against y should yield a 
straight line of gradient -c ,  except of course for small values of y, when the 
expansion isinvalid. Two values oft were tried, t = 4.5 and t = 5.0. The method of 
least squares was used to fit a, straight line to the points, using data from the 
range 15 < y < 90 for t = 4.5 and 15 < y < 145 for t = 5.0. The value of c that 
emerged was 3.51 in each case, with a standard error of about 0.003. This differs 
significantly from Proudman & Johnson's estimate, c = 3.8. However, since 
the value of c is determined by the initial flow, it seems likely that the present 
estimate is the more accurate, for the following reasons. 

The numerical integration was started off by using the co-ordinate 

y1 = &y'(vt)-i, 

the initial profile being given by u = erf y. Since erf z = 0.99997 when z = 3, this 
corresponds to taking about 60 points across the layer, since Ay was chosen as 
0.05. However, Proudman & Johnson used the co-ordinate yz throughout, and 
started off the integration from t = 0.0025, the initial data being found from the 
series solution for small times. Hence the init,ial velocity profile in this case is given 
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Skin friction 
c=3,51 
A; = - 2.35 
,4,= -21.18 

FIGURE 1. Two-dimensional skin friction. 
C = 3.51, A; = -2.35, A,  = -21.18. 

approximately by u = erf (y2/2t3) = erf (lOy,) at  t = 0.0025. Thus the whole of 
the variation in u is initially confined to the region 0 < yz 6 0-3, which corre- 
sponds to only a few mesh lengths in the y direction and presumably gives less 
accurate starting values than in the present case. Presumably, any inaccuracy in 
the initial profile would mean that a large time interval would have to elapse 
before the emergenoe of the asymptotic similarity solution. This in turn would be 
reflected in a change in the value of c,  as was indicated in the previous section. 
For the purposes of estimating the values of the constants A; and A,  we shall 
therefore assume that c = 3.51 is a fairly accurate estimate. 

5. Comparison with numerical results 
As has been indicated, the constants A; and A, must be determined from the 

numerical solution. This is not a trivial task. The best way seems to be by choosing 
A; and A, to give the best agreement between analytical and numerical curves of 
skin friction against time. The curves of displacement thickness against time 
then give some sort of cross-check. Approximately, this givesf”(0) = - 4-1, and 
hence ai = - 0.86. This then gives A; = - 2.3 and A, = - 7.4. Alsof’i,(O) = 13, 
a,, = 5.6, A, = - 21 and a;, = 1.1. 

t 
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FIGURE 2. Two-dimensional displacement thickness. 

c = 3.51, A; = - 2.35, A ,  = - 2148 .  

Clearly these figures are only very approximate. Their sole merit is that they 
give the best fit with the expansion as far as  it has been taken, and we have no 
means of estimating the effect of further undetermined constants in higher order 
terms. However, with these values, good agreement is obtained with numerical 
results back to about t = 3.25. (It may be interesting to point out that the three- 
term Goldstein & Rosenhead expansion about t = 0 gives reasonable agreement 
with the skin friction curve out to about t = 0.8.) 

We have 
g“(0,  t )  -f;(o) +ce-”f;(o) +cte-@.fi(o) +c2te-2tfi1(0) +c2e-2yio(0). 

Sl =fg(o), 8; = f : ( O ) + c e - t f ; ( O ) ,  8: = ~;+c+e-%efi(O), 
S, = Sg + c2t e-2ttf’il( 0) + c2 e-2yio( 0). 

Also, the displacement thickness of the whole flow, say A, is given by 

The curves in figure 1 are as follows: 

The curves in figure 2 are as follows: 

X, = S, - gA,, S, = ( 2 1 ~ )  et ,  8, = 8, - c(gAi2 - I + A, + Ak1e-t. 
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6.  Conclusions 
The foregoing analysis constitutes an exact solution of the Navier-Stokes 

equations in the idealized case of an infinite plane boundary. However, it  should 
be remembered that for a cylinder, having non-zero curvature, the solution is a 
boundary-layer approximation only, and is valid only at  the rear stagnation 
point x = 0. In  order to examine the flow for non-zero values of x, we must revert 
to the full boundary-layer equations. This problem is now being studied for the 
case of a circular cylinder. 

In  this paper we have examined only the case of two-dimensional stagnation- 
point flow. However, work has also been carried out for the case of flow a t  an axi- 
symmetric stagnation point, and indeed, for the general three-dimensional case. 

It is hoped t o  make of all these studies the subject of later publications. 
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